The function
$$f(x) = \sin^4 x + \cos^4 x$$
 increases if
(1999 - 2 Marks)
(a) $0 < x < \pi/8$ (b) $\pi/4 < x < 3\pi/8$
(c) $3\pi/8 < x < 5\pi/8$ (d) $5\pi/8 < x < 3\pi/4$
SOLUTION
(b) We are given $f(x) = \sin^4 x + \cos^4 x$
 $\Rightarrow f'(x) = 4\sin^3 x \cos x - 4\cos^3 x \sin x$
 $= -4 \sin x \cos x (\cos^2 x - \sin^2 x)$
 $= -2. \sin 2x \cos 2x = -\sin 4x$
Now for $f(x)$ to be increasing function
 $f'(x) > 0 \Rightarrow -\sin 4x > 0 \Rightarrow \sin 4x < 0$
 $\Rightarrow \pi < 4x < 2\pi \Rightarrow \frac{\pi}{4} < x < \frac{\pi}{2}$
Since, If $f(x)$ increasing on $(\pi/4, \pi/2)$
 $\frac{\pi}{4} = \frac{4\pi}{8} > \frac{3\pi}{8}$
It will be increasing on $(\pi/4, 3\pi/8)$.